Name: \qquad Period: \qquad Date:

Packet 1: Introduction to Biology

Notes: The Scientific Method

I. What is Biology?

- bio = \qquad -ology = \qquad , therefore biology is
\qquad
- What are the Characteristics of Life?

- All living things are classified into one of 6 Kingdoms. These kingdoms are:
- 2 \qquad kingdoms - single celled and no nucleus (prokaryote)
- \qquad - single celled with a nucleus (eukaryote)
- \qquad - multicellular and eukaryotic, cell wall, decomposer
\qquad - multicellular, eukaryotic, cell wall, producer
- \qquad - multicellular eukaryotic, consumers

A is a tool used to identify the scientific name of an organism. Under each picture, write the correct scientific name of the organism

1.	Has green colored bodygo to 2
	Has purple colored body go to 4
2.	Has 4 legs to 3
	Has 8 legs Deerus octagis
3.	Has a tail Deerus pestis
	Does not have a tail Deerus magnus
4.	Has a pointy hump Deerus humpis
	Does not have a pointy humpgo to 5
5.	Has earsDeerus purplinis
	Does not have earsDeerus deafus

Scientific names have two words - \qquad and \qquad . The first word is the genus. The second word identifies the species.

Example: Homo sapiens - Homo is the genus, sapiens is the species.

The scientific name of a grizzly bear is Ursus arctos.
What genus does the grizzly bear belong to?

In the dichotomous key above, what genus do all of the organisms belong to? \qquad

Parts of an Experiment

Part of the experiment	Definition	Identify this in the Seed Lab
manipulated variable	or	the ONE thing you change in the setup
responding variable	or	
group	Group that does not receive treatment. What you compare your results back to.	
$\overline{\text { group }}$	Group(s) that receive the treatment (test groups).	
$\overline{\text { variables (constants) }}$	Things that are kept the same between all the setups	

Additional things to note:

- 2 criteria for a hypothesis are: \qquad \& \qquad
Ex: If a plant is grown under white light, then it will grow more rapidly than a plant under green light because green light is reflected by plants and not absorbed.
- 2 types of data:
- Quantitative data = \qquad ; Qualitative data = \qquad
III. Steps of the Scientific Method

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5.
6.
7. \qquad
IV. Notes: Hypothesis, Theory, Law, Observation \& Inference what's the difference?

Term	Definition	Example
	An educated guess about what you think will happen.	
	A very well supported explanation of something that has been observed. It tries to explain why something is happening. It can never really be proven, just highly supported by data.	
	A description of something that has been observed. It is known to be true.	
	A statement based on what you see. Does not try to explain.	
	A logical interpretation of what you see based on prior knowledge.	

V. Notes: Organizing Data

Line \& Bar Graphs_- shows the relationship between two variables

- Independent variable -placed on the \qquad (horizontal axis).
- Dependent variable - always placed on the \qquad (vertical axis).
\qquad - used to compare two or more sets of data, multiple lines.
- _ tells what the graph is about and should be a concise statement.
- \qquad - the scale on both the x and y-axis usually begin with zero (some exceptions include time/dates).
- Values must increase by equal spacing and the same numeric intervals.
- Do the X and Y axes have to have the same scale (i.e. jump by the same interval)? \qquad

Line Graph

1. Use the line graph in Figure 2 to answer questions A through F below. Make sure to put in your units after your numbers!!!!
A. Which plant grew the tallest? \qquad
B. How many plants grew to be at least 6 cm tall? \qquad
C. Which plant grew the fastest in the first five days? \qquad
D. What is the dependent variable?
E. After 10 days, how much had plant 3 grown? \qquad
F. How long did it take for plant 1 to grow 6 cm ? \qquad
G. Why is it a benefit to put multiple lines on one graph? \qquad

$$
\begin{array}{|l}
\hline \text { Plant } 1 \text { — } 2 \text { Plant } 2 \\
\text { Plant } 3
\end{array}
$$

Figure 2
2. Use the information recorded in Data Table 1 to construct a LINE graph on the grid provided below. You should label each axis, mark an appropriate scale on each axis, plot the data, connect the points, and give your graph a title.

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Breathing rate (per 5 minute)	
10	Guppies	Goldfish
15	15	8
15	25	13

